Joint Communication, Computation, Caching, and Control in Big Data Multi-access Edge Computing
نویسندگان
چکیده
The concept of multi-access edge computing (MEC) has been recently introduced to supplement cloud computing by deploying MEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However, compared to a resourceful cloud, an MEC server has limited resources. When each MEC server operates independently, it cannot handle all of the computational and big data demands stemming from the users devices. Consequently, the MEC server cannot provide significant gains in overhead reduction due to data exchange between users devices and remote cloud. Therefore, joint computing, caching, communication, and control (4C) at the edge with MEC server collaboration is strongly needed for big data applications. In order to address these challenges, in this paper, the problem of joint 4C in big data MEC is formulated as an optimization problem whose goal is to maximize the bandwidth saving while minimizing delay, subject to the local computation capability of user devices, computation deadline, and MEC resource constraints. However, the formulated problem is shown to be non-convex. To make this problem convex, a proximal upper bound problem of the original formulated problem that guarantees descent to the original problem is proposed. To solve the proximal upper bound problem, a block successive upper bound minimization (BSUM) method is applied. Simulation results show that the proposed approach increases bandwidth-saving and minimizes delay while satisfying the computation deadlines.
منابع مشابه
Access and Mobility Policy Control at the Network Edge
The fifth generation (5G) system architecture is defined as service-based and the core network functions are described as sets of services accessible through application programming interfaces (API). One of the components of 5G is Multi-access Edge Computing (MEC) which provides the open access to radio network functions through API. Using the mobile edge API third party analytics applications ...
متن کاملA Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environm...
متن کاملAn Architecture for Security and Protection of Big Data
The issue of online privacy and security is a challenging subject, as it concerns the privacy of data that are increasingly more accessible via the internet. In other words, people who intend to access the private information of other users can do so more efficiently over the internet. This study is an attempt to address the privacy issue of distributed big data in the context of cloud computin...
متن کاملInformation-Centric Wireless Networks with Mobile Edge Computing
In order to better accommodate the dramatically increasing demand for data caching and computing services, storage and computation capabilities should be endowed to some of the intermediate nodes within the network. In this paper, we design a novel virtualized heterogeneous networks framework aiming at enabling content caching and computing. With the virtualization of the whole system, the comm...
متن کاملJoint Computation and Communication Cooperation for Mobile Edge Computing
This paper proposes a novel joint computation and communication cooperation approach in mobile edge computing (MEC) systems, which enables user cooperation in both computation and communication for improving the MEC performance. In particular, we consider a basic three-node MEC system that consists of a user node, a helper node, and an access point (AP) node attached with an MEC server. We focu...
متن کامل